DESCRIPTION OF THE COURSE OF STUDY

Course code	0541.6.MAT2.C.MNAA	
Name of the course in	Polish	Metody numeryczne i analiza algorytmów
	English	Numerical Methods and Analysis of Algorithms

1. LOCATION OF THE COURSE OF STUDY WITHIN THE SYSTEM OF STUDIES

1.1. Field of study	mathematics
1.2. Mode of study	full-time studies
1.3. Level of study	Graduate (Master)
1.4. Profile of study*	general academic profile of studies
1.5. Person/s preparing the course description	dr Anatolii Nikitin
1.6. Contact	anatolii.nikitin@ujk.edu.pl

2. GENERAL CHARACTERISTICS OF THE COURSE OF STUDY

2.1. Language of instruction	Polish and English
2.2. Prerequisites*	

3. DETAILED CHARACTERISTICS OF THE COURSE OF STUDY

3.1. Form of classes	Lectures and laboratories	
3.2. Place of classes	classes in the UJK teaching room	
3.3. Form of assessment	Graded credit (lecture, laboratory exercises)	
3.4. Teaching methods	lecture - informative lecture laboratory exercises - problem-solving with the participation of the laboratory teacher, discussion, work with a book.	
3.5. Bibliography	Required reading	F. Szidarovszky, S. J. Yakowitz. Principles and Procedures of Numerical Anal- ysis, Springer, 1978 T. Cormen, C. Leiserson, R. Rivest, Introduction to algorithms, WNT, 1997.
	Further reading	D. Kincaid, W. Cheney, Numerical Analysis, WNT, 2006. A.V. Aho, J.E. Hopcroft, J.D.Ullman, Algorithms and Data Structures, Helion, 2003. L. Banachowski, K.Diks, W. Rytter, Algorithms and data structures, WNT, 2001, 2003.
Z. Fortuna, B. Macukow, J. Wasowski, Numerical methods, WNT, 1993.		
A. Kietbasiński, H. Schwetlick, Numerical Linear Algebra, WNT, 1992.		
J. Povstenko, Introduction to umber methods, Akade-micka Oficyna		
Wydawnicza EXIT, 2005.		

4. OBJECTIVES, SYLLABUS CONTENT AND INTENDED LEARNING OUTCOMES

4.1. Course objectives (including form of classes)

Lectures

C1 - familiarizing students with the field of numerical methods and selected issues of numerical analysis, numerical linear algebra, and numerical solution of differential equations
C2 - presentation of the fundamental issues of algorithm analysis

Laboratories

C1 - teaching practical computer implementation of selected numerical methods, in particular algorithm analysis

4.2. Detailed syllabus (including form of classes)

Lecture:

Formalization of the concept of error. Sources of errors. Floating point arithmetic, loss of significant digits, numerical error. Approximation of functions. Error of the Lagrange interpolation polynomial. Numerical differentiation. Numerical integration. Numerical solution of equations and systems of equations. Numerical solution of ordinary and stochastic differential equations. Algorithm. Correctness of the algorithm. Algorithm analysis. Computational complexity of algorithms (pessimistic, expected). Complexity classes - P problem, NP problem. Recursion. Recursive equations and methods of solving them. Stable and unstable algorithms.

Laboratory exercises:

Learning about selected numerical algorithms and their application to solve mathematical problems. Computer realizations of selected numerical methods. Identifying and specifying algorithmic problems. Analysis of the complexity of algorithms. Discussion of self-implemented projects.

4.3 Intended learning outcomes

¢ٌ	A student, who passed the course	Relation to learning outcomes
within the scope of KNOWLEDGE:		
W01	understands the concept of an algorithm and its correctness	MAT2A_W05
W02	defines the computational complexity of algorithms	MAT2A_W05
W03	knows the computational complexity classes of algorithms	MAT2A_W05
W04	defines the error of numerical calculations and knows their sources	$\begin{aligned} & \hline \text { MAT2A_W01 } \\ & \text { MAT2A_W05 } \end{aligned}$
W05	knows numerical methods related to selected mathematical problems	MAT2A_W05
within the scope of ABILITIES:		
U01	recognizes the problem, including practical issues that can be solved algorithmically.	MAT2A_U15
U02	understands the mathematical foundations of algorithm analysis and is able to determine the computational complexity of selected algorithms	MAT2A_U15
U03	is able to construct algorithms for solving selected numerical problems	MAT2A_U15
U04	can arrange and analyze an algorithm compliant with the specification and write it in a selected programming language	MAT2A_U15
U05	compiles, runs and tests a self-written computer program	MAT2A_U15
U06	can independently search for necessary information in the literature	MAT2A_U13
within the scope of SOCIAL COMPETENCE:		
K01	formulates precisely questions to deepen his own understanding of a given topic or to find missing elements of reasoning	MAT2A_K02
K02	analyzes the logical accuracy of other people's statements and strives for the precision of his own statements	MAT2A_K04

4.4. Methods of assessment of the intended learning outcomes

Teaching outcomes (code)	Method of assessment (+/-)					
	Form of classes	Form of classes				
	L	C	Lab	L:	C	Lab
W01	+					
W02	+					
W03	+					
W04	+					
W05	+					
U01						+
U02						+
U03						+
U04						+
U05						+
U06						+
K01						+
K02						+

4.5. Criteria of assessment of the intended learning outcomes		
Form of classes	Grade	Criterion of assessment
	3	at least 50% and no more than 60% of the total number of points possible
	3,5	more than 60% and no more than 70% of the total number of points possible
	4	more than 70% and no more than 80% of the total number of points possible
	4,5	more than 80% and no more than 90% of the total number of points possible
	5	more than 90% of the total number of points possible

	3	at least 50% and no more than 60% of the total number of points possible
	3,5	more than 60% and no more than 70% of the total number of points possible
	4	more than 70% and no more than 80% of the total number of points possible
	4,5	more than 80% and no more than 90% of the total number of points possible
	5	more than 90% of the total number of points possible

5. BALANCE OF ECTS CREDITS - STUDENT'S WORK INPUT

Category	Student's workload	
	Full-time studies	Extramural studies
NUMBER OF HOURS WITH THE DIRECT PARTICIPATION OF THE TEACHER /CONTACT HOURS/	45	
Participation in lectures*	15	
Participation in classes, seminars, laboratories*	30	
INDEPENDENT WORK OF THE STUDENT/NON-CONTACT HOURS/	30	
Preparation for the lecture*	0	
Preparation for the classes, seminars, laboratories*	10	
Preparation of reports	10	
Gathering materials for the project/Internet query*	10	
TOTAL NUMBER OF HOURS	75	
ECTS credits for the course of study	3	

*delete as appropriate

Accepted for execution (date and legible signatures of the teachers running the course in the given academic year)

